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5 Abstract 

When internal waves interact with topography, such as continental slopes, they can transfer wave energy to 

local dissipation and diapycnal mixing. Submarine canyons comprise approximately ten percent of global 

continental slopes, and can enhance the local dissipation of internal wave energy, yet parameterizations 

of canyon mixing processes are currently missing from large-scale ocean models. As a first step in the 

development of such parameterizations, we conduct a parameter space study of M2 tidal-frequency, low-

mode internal waves interacting with idealized V-shaped canyon topographies. Specifically, we examine the 

effect of varying the canyon mouth width, shape and slope of the thalweg (line of lowest elevation) (i.e. 

flat bottom or near-critical slope). In Part 1 of this study (Nazarian and Legg, 2017a), we developed a ray 

tracing algorithm and used it to estimate how canyons can increase the wave Froude number, by increasing 

energy density and increasing vertical wavenumber. Here in Part 2 we examine the internal wave scattering 

in continental slope canyons using numerical simulations, and compare the results with the linear ray tracing 

predictions. We find that at intermediate canyon widths, a large fraction of incoming wave energy can be 

dissipated, which can be explained as a consequence of the increase in ray density and, for near-critical slope 

canyons, increase in vertical wave number, which leads to lower Richardson number followed by instability. 

Relative to a steep continental slope without a canyon, we find that V-shaped flat bottom canyons always 

dissipate more energy and are an effective geometry for wave trapping and subsequent energy loss. When 

both flat bottom canyons and near-critical slope canyons are made narrower, less wave energy enters the 

canyon, but a larger fraction of that energy is lost to dissipation due to subsequent reflections and wave 

trapping. There is agreement between the diagnostics calculated from the numerical model and the linear 

ray tracing, lending support for the use of linear theory to understand the fundamental dynamics of internal 

wave scattering in canyons. 
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7 1. Introduction 

8 Internal waves are efficient transmitters of energy across ocean basins. As internal waves propagate away from 

9 their generation site, they may encounter the continental slope, where they can break and lead to diapycnal 

10 mixing. One of the continental slope features that can induce wave breaking are continental slope canyons. 

11 Despite observations highlighting their potential to be a sink of internal tidal energy, continental slope 

12 canyons have been largely overlooked by the modeling community (Gordon and Marshall, 1976; Hotchkiss 

13 and Wunsch, 1982; Gardner, 1989; Petruncio et al., 1998; Codiga et al., 1999; Bosley et al., 2004; Bruno 

14 et al., 2006; Lee et al., 2009a,b; Xu and Noble, 2009; Gregg et al., 2011; Hall and Carter, 2011; Waterhouse 

15 et al., 2013; Vlasenko et al., 2016). Here, we put forth a parameter space sweep to better understand the 

16 processes involved in internal wave scattering and mixing in continental slope canyons. 

17 In conducting this parameter space study of internal wave scattering in continental slope canyons, our 

18 overarching goal is to contribute to the development of parameterizations of mixing by internal wave breaking. 

19 Such parameterizations, regardless of the topography for which they are applied, are increasingly formulated 

20 in terms of the global energy budget for internal waves. Parameterizations have been developed from the 

21 entire lifecycle of internal waves; from their generation at regions of rough topography (Buijsman et al., 2012) 

22 to their propagation over ocean basins and interaction with other waves and eddies (Polzin, 2008; MacKinnon 

23 et al., 2013), as well as their eventual breaking at topographic features in the ocean interior or continental 

24 slope (Klymak et al., 2013; Legg, 2014). These studies have used a full internal wave energy budget to study 

25 the scattering effects of various, isolated, topographies (Klymak et al., 2013; Legg, 2014). By accounting 

26 for all terms in the energy budget, such studies have provided useful scalings for instability and turbulent 

27 dissipation based on properties of the topography; namely, the ratio of topographic height to the domain 

28 depth, the topographic width, and the relative topographic steepness. Given that mixing in the ocean is 

29 strongest around regions of varying topography (Polzin et al., 1997), and the location and magnitude of such 

30 mixing has ramifications for the large-scale ocean circulation (Melet et al., 2016), it is important for the 

31 formulation of ocean model mixing parameterizations to understand which and how topographic parameters 

32 modulate mixing. It is thus crucial to understand how much of the internal wave energy that encounters 

33 the continental slope topography is lost to mixing and dissipation. Our study analyzing the topographic 

34 dependence of internal wave dissipation is one component of this overall understanding. 

35 While our study is motivated by observations of mixing in actual continental slope canyons, we begin by 

36 focusing on idealized V-shaped canyons in order to tease out the fundamental dynamics. In Part 1 of this 

37 study, we developed a ray-tracing algorithm which we used to explore the impact of canyon geometry on 

38 ray focusing and wave number in a linear context (Nazarian and Legg, 2017a). We used the ray tracing 

39 algorithm to gain a first-order understanding of the physical processes than can lead to instability in canyons 

40 as well as understand the regime where waves become nonlinear. Here in Part 2 we will compare the 
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41 predictions of this linear ray tracing algorithm with fully nonlinear numerical simulations of internal waves 

42 scattering in identical canyon geometries using the Massachusetts Institute of Technology global circulation 

43 model (henceforth MITgcm). The idealized canyons we have chosen to analyze are oversimplifications of 

44 real canyon bathymetry; however our focus here is not to capture every detail of particular wave-topography 

45 interaction, but to explore the parameter space. In this part of our study, we explicitly diagnose the fraction 

46 of the incoming energy lost in the canyon, which is a quantity needed for parameterization development. 

47 The rationale for the V-shaped, idealized canyons that we have developed is described in Part 1. 

48 The goal of this study is to understand the parameter dependence of internal wave energy dissipation and 

49 develop a physical framework to extend this theory to more realistic canyon topographies. We are particularly 

50 interested in the topographic parameters of canyon sidewall steepness (α) and canyon aspect ratio (ζ). In the 

51 process we seek to understand and predict the spatial structure of dissipation and determine the scenarios 

52 in which enhanced mixing is most likely. In this second part, we undertake a numerical parameter space 

53 study of idealized continental slope canyons and compare with theoretical predictions. We begin with a brief 

54 summary of the parameters of interest (covered in more detail in Nazarian and Legg (2017a)) in §2. In §3 we 

55 describe the MITgcm setup and how the model compares with the ray tracing algorithm developed in Part 1. 

56 We also provide a full summary of the calculations used to diagnose energy loss in the model. In §4 we take a 

57 holistic view of the parameter space, and use a combination of both the ray tracing and numerical simulations 

58 to construct an argument for the parameter dependence of internal wave breaking and dissipation in this 

59 idealized topography. We find that canyons are indeed efficient dissipators of incoming internal wave energy. 

60 The primary mechanisms for energy loss in canyons are increases in ray density and vertical wavenumber. 

61 We additionally confirm the robustness of the ray tracing algorithm through comparison with the MITgcm. 

62 2. Review of parameter space 

63 In this study, we consider two parameters related to the topography. Specifically, we consider the canyon 

64 aspect ratio, or the canyon length relative to the canyon width, expressed through angle ζ. The second 

65 parameter that we consider is α, the canyon sidewall steepness. We are primarily interested in α as it 

66 compares to the internal wave slope (i.e. the relative topographic steepness). Omitting rotation, we express 

67 this steepness as 

| tan α| 
s = √ (1) 

|ω/ N2 − ω2| 
68 where N is the buoyancy frequency and ω is the wave frequency. For our simulations we consider the 

69 dominant tide, which is the lunar semidiurnal tide (M2). 
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70 We have two classes of V-shaped canyons, that are distinguished only by their thalweg steepness, αt. The 

71 first class of canyons has a thalweg steepness that is near-critical and so, by construction, near-critical to 

72 supercritical sidewalls. The second class of canyons has vertical walls, which are thus very supercritical. The 

73 second parameter of interest is the canyon aspect ratio, ζ, which is varied systematically for both canyons 

74 (i.e. we run simulations for both classes of canyons for each ζ value). We modulate ζ by adjusting the 

75 canyon width only. Both canyons have a fixed height, H, of 100 meters and a fixed length, L, of 744 meters. 

76 See figure 1 for the geometry of the two canyon classes. In figure 1, isobaths, or lines of constant depth, are 

77 overlaid on the sidewalls to make clear that the canyons vary in αt. Parameters of interest, both topographic 

78 and those for the wave and ambient fluid, are listed in table 1, as well as their corresponding values for the 

79 submarine canyons considered in this study. 

80 3. Methods 

81 A two-pronged approach is taken to study the internal wave breaking dynamics in idealized V-shaped canyons: 

82 i) a suite of numerical simulations using the MITgcm and ii) a linear ray tracing algorithm using the theory 

83 developed in Part 1 (Nazarian and Legg, 2017a). When used in tandem, we can gain an understanding of 

84 the parameter space dependence of internal wave-driven mixing in these idealized canyons. Both the ray 

85 tracing algorithm and numerical simulations are set up identically for all canyon simulations, regardless of 

86 the topography class in which they fall. In Part 1 of this study (Nazarian and Legg, 2017a) we describe the 

87 ray tracing algorithm. Here we provide an overview of the MITgcm numerical simulations. 

88 A suite of numerical simulations is conducted using the MITgcm model (Marshall et al., 1997). The MITgcm 

89 is ideal for this problem due to its non-hydrostatic capabilities, arbitrary topography and open boundaries 

90 (Legg and Adcroft, 2003; Nikurashin and Legg, 2011; Klymak et al., 2013; Legg, 2014). All simulations 

91 are conducted in 3D (x, y, z) with flow allowed in all three directions. The lowest-mode internal wave is 

92 forced at the Western Boundary and propagates Eastward toward the variable canyon topography (x = 0), 

93 at which point it can reflect, scatter and refract. Any part of the wave that makes it past the topography 

94 is allowed to exit the domain at the Eastern Boundary via radiative (Orlanski) boundary conditions. The 

95 Southern and Northern boundaries (y = −Ly/2 and y = +Ly /2, respectively) are equipped with periodic 

96 boundary conditions. The Western boundary has a sponge layer 20 grid cells wide so that any wave that is 

97 reflected back from the topography towards the generation site does not impact the generation of the wave. 

98 We employ a no normal flow boundary condition, as well as a free slip boundary condition above the full 

99 bottom topography (i.e. flat ocean interior, continental slope canyon and shelf) and a linear free surface 

100 (z = 0). 

101 The wave is forced with the M2 tidal frequency (ω = 1.41 × 10−4 s−1). We neglect the effects of rotation 
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102 (i.e. f = 0; we discuss the assumption of no rotation in detail in section 5). All simulations have a constant 

−2 
103 background density stratification of N2 = 10−6 s . Since both ω and N2 are fixed, the wave steepness is 

104 also fixed. Additionally, since the stratification is constant and the height of the canyon is half the height of 

105 the total ocean depth, by WKB scaling, these canyons are of similar effective vertical dimension to canyons 

106 in the real ocean in which there is non-uniform stratification, with largest stratification concentrated near 

107 the surface. This yields a non-uniform wave velocity in z with the wave amphidromic point (or the point 

108 in the vertical at which the horizontal velocity changes sign) at about the maximum topographic height of 

109 the canyon. With our constant stratification, this amphidromic point is shifted to half depth, which is the 

110 maximum height of our topography and thus in broad agreement with reality. Both this order of magnitude of 

111 stratification and the relative constancy of stratification through the water column is observed at the mouth 

112 of La Jolla Canyon (M. Hammann, personal communication). Given that stratification is constant, waves 

113 can not achieve both subcritical and supercritical reflection off the bottom of our V-shaped topography, and 

114 thus can not form a true wave trap, although multiple reflections are still possible with the wave potentially 

115 breaking after such reflections (Maas et al., 1997). 

116 Given the small scales of overturning we use a stretched grid to concentrate most of the resolution at the 

117 topography and use the coarsest resolution possible away from the topography to resolve the incoming wave. 

118 Such a setup allows us to complete an ensemble of simulations while minimizing the computing costs. In 

119 the low resolution model runs, 4x varies from 77 to 3 meters, 4y is a constant 44 meters and 4z is a 

120 constant 4 meters (corresponding to a grid size of 850 × 100 × 50). The high resolution simulations have 4x 

121 varying from 78 to 2 meters, 4y varying from 41 to 2 meters and 4z a constant 2 meters (corresponding 

122 to a grid size of 1700 × 200 × 100, exactly double that of the low resolution simulations). At the variable 

123 canyon topography, all grid boxes are 2 m × 2 m × 2 m. The turbulent overturning length scales that we p
124 aim to capture in the canyon can be characterized by the Ozmidov scale, which is given as LO = �/N3 , 

125 where � is the turbulent dissipation rate. Using an elevated level of turbulent dissipation of 10−6 m2/s3 , 

126 which is the average maximum dissipation rate seen throughout our suite of canyon simulations, we arrive 

127 at an Ozmidov scale of approximately 32 meters, which both high and low resolution simulations resolve 

128 in the canyon region. Since canyons are symmetric and we do not consider rotation (i.e. f = 0), we could 

129 have placed a free-slip wall in the center of the canyon, at y = 0, to conduct the simulations with half the 

130 number of grid points. We choose not to take this approach so that the model configuration is generalizable 

131 for future simulations with realistic, non-symmetric canyon topography and rotational effects (f > 0). 

132 Low resolution experiments are hydrostatic, while high resolution experiments are conducted using the 

133 MITgcm non-hydrostatic capabilities. Since the high resolution simulations begin to resolve the lengthscales 

134 of overturning, it is appropriate to turn on the non-hydrostatic capability as mixing is fundamentally a 

135 non-hydrostatic process. A comparison of the hydrostatic and non-hydrostatic results is presented in Section 

136 5. A final difference between the low resolution and high resolution simulations is the forced wave velocity 
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137 amplitude. In the low resolution cases, this amplitude is 2 cm/s, while it is 1.2 cm/s in the high resolution 

138 cases. This slight modification was done to make the already costly high resolution simulations more efficient 

while satisfying the CFL criterion (i.e. umax 
4t < 1 where umax is the maximum flow speed). Low 139 4xmin 

140 resolution simulations at this decreased forcing frequency were also conducted to test whether any differences 

141 between low and high resolution simulations are amplitude dependent or dependent on the higher resolution 

142 and non-hydrostatic configuration. See figures 2 and 3 for density snapshots along the center of the domain 

143 from two of the high resolution simulations. The initial Froude number, Fr0 is 0.32 for the low resolution 

144 simulations and 0.19 for the high resolution simulations, safely under the threshold of unity indicating stable 

145 initial flow and linear waves. Both low and high resolution simulations have a time step of 1 s, a horizontal 

146 kinematic viscosity of 10−2 m2/s and a vertical kinematic viscosity of 10−3 m2/s. The value of scalar 

147 diffusivity is set to zero and no turbulence model is used. A one-step, seventh-order monotonicity preserving 

148 advection scheme is used, which minimizes numerical diffusion. 

149 In order to reach a quasi-steady state, all simulations are run for 8.5 days. It takes the first 4 days of 

150 the simulations for the waves to reach the topography and begin to reflect and refract. Around day 4, the 

151 wave energy flux over the canyon and continental shelf attains an approximately constant value, and thus 

152 a quasi-steady state is reached. All analysis uses the last 4.5 days (i.e. from tidal cycle seven onwards) to 

153 insure all transient effects are omitted. 

154 Three diagnostics are used to analyze the MITgcm numerical simulations. The first two diagnostics are 

155 derived (as in Cummins and Oey (1997), Kurapov et al. (2003), Kang and Fringer (2012) and Buijsman, 

156 Legg, and Klymak (2012)) from the baroclinic energy equation 

∂ h (KE + AP E)i + hr · F i = hCi − hDi − hMi (2) 
∂t 

157 where the first term is the tendency of the kinetic and linear available potential energies, the second term 

158 is the divergence of the energy flux, the third term is the conversion from barotropic to baroclinic and vice 

159 versa, the fourth term is the dissipation and the fifth term is the diapycnal mixing, or residual. The bracket 

160 notation indicates that these are tidally averaged quantities. All of these canyon-integrated quantities are 

161 shown as a function of the tidal cycle in the MITgcm, in figure 4 and inform our assessment of a quasi-steady 

162 state being reached at the seventh tidal cycle. 

02 02 
163 For the first term, the kinetic energy, KE, can be expressed as 1 ρ0(u + v + w02) and the linear available 2 

potential energy, AP E, can be expressed as g2ρ02/(2ρ0N2) where ρ0 is the constant density of 999.8 kg/m3 
164 , 

0 0
165 (u , v , w0) is the 3D wave velocity field, g is the standard gravitational acceleration of 9.81 m/s2 and ρ0 

166 is the perturbation density, expressed as ρ0(x, y, z, t) = ρ(x, y, z, t) − ρb(z), where ρb(z) is the background 

167 density profile at model initialization. Since the system is in a quasi-steady state, the first term in (2) (i.e. 
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171 

177 

168 the tendency of the energy) tends to zero, as shown in figure 4. 

169 The second term of (2) is the divergence of the energy flux. Given that there is no barotropic flow, this flux 

170 can be cast as 

F 0 = u p 0 + u 0KE + u 0AP E − µH rKE (3) 

0where p is the pressure anomaly associated with the wave and µH is the model’s horizontal viscosity (a 

172 constant value of 0.01 m2/s). There is no explicit contribution from the gradient of the available potential 

173 energy, as both the horizontal and vertical components of diffusion are set to be a constant value of 0 in the 

174 model. Thus, the flux is composed of three main contributions: pressure work (the first term in (3)), the 

175 advection of energy (the second and third terms in (3)) and horizontal diffusion (the fourth term in (3)). 

176 Energy conversion, the third term in (2) can be expressed as 

C = p 0−H W (4) 

where p0−H is the pressure evaluated at the topography and W is the vertical barotropic velocity (i.e. 

178 W = −U · rH, with U being the horizontal component of the barotropic flow). For our case of remotely 

179 generated internal waves, C is a sink term, and found to be small (again see figure 4). 

180 Following the derivation of (Kurapov et al., 2003) and the notation of (Buijsman et al., 2012), dissipation, 

181 the fourth term in (2) can be expressed as 

( ! ) � �2 � �2 � �20 0 0 ∂u ∂u ∂u
D = ρ0 µH + + µV (5) 

∂x ∂y ∂z 

where µV is the vertical viscosity, set to constant of 0.001 2/s. For both the energy flux, (3), and 182 a m

183 dissipation, (5), the vertical velocity perturbation, w0 is omitted from the hydrostatic simulation diagnostics 

184 and is included in diagnostics for the nonhydrostatic simulations. The fifth term in (2) is the diapycnal 

185 mixing term and is very difficult to accurately capture through model diagnostics. Given that it is a small 

186 contribution to the overall energy budget, it is evaluated as a residual (see figure 4). 

187 If the tendency, conversion and diapycnal mixing terms (i.e. ∂/∂t, C and M , respectively) are small, then 

188 for a remotely generated internal wave with no background, barotropic flow, (2) reduces to 

hr · F i = −hDi + K (6) 
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189 where K is the residual term, resulting from any small energy conversion from the baroclinic to the barotropic, 

190 any small deviation of the energy tendency in the tidal average, a small contribution from diapycnal mixing 

191 and numerical dissipation as well as any small errors related to conducting these calculations offline (Buijsman 

192 et al. (2012)). We then take a volume integral of (6) over the canyon region and, after applying Gauss’ 

193 Theorem, obtain 

‹ ˚ 
hF i · n ˆ dS = − hDidV + K (7) 

S(V ) V 

194 where V is the canyon volume, S(V ) are the surfaces, or faces, of that canyon volume and K is the volume-

195 integrated residual. This equality provides the setup for calculating our first two diagnostic quantities, which 

196 we refer to as E1 and E2. 

197 E1 is the left-hand side of (7). Based on our model configuration, we calculate this as 

*⎧ ⎫ " #b " #d + ˆ ˆ ˆ ˆ⎨ ⎬ 
E1 = Fxdydz − Fydxdz (8) ⎩ ⎭ H (d−c) H (b−a) 

a c 

198 where Fx and Fy are the x- and y-components of the energy flux (3), respectively, H is the topographic 

199 depth, a corresponds to the face before the canyon mouth (open ocean), b corresponds to the face after the 

200 canyon head (continental shelf), c corresponds to the face flanking the Southern-most point of the canyon 

201 and d corresponds to the face flanking the Northern-most point of the canyon (see figure 5 for a schematic 

202 of this setup). Faces c and d are taken at the edge of the canyon, while faces a and b are taken just before 

203 and after the canyon, respectively, to include all canyon-induced energy loss. This x-extent of energy loss 

204 due to the canyon will be further discussed in Section 4. Thus, the divergence of the energy flux, E1, is 

205 the difference between the energy flux leaving the canyon region (primarily through faces b, c and d, with 

206 some backwards reflection also occurring through face a) and the energy flux initially entering the canyon 

207 region through face a. Inward and outward energy fluxes through face a are not calculated separately, rather 

208 the net flux at a is calculated with the directionality of the flux being determined by the sign of the zonal 

209 velocity. 

210 The second diagnostic, E2, is the dissipation, which is present on the right-hand side of (7). Based on our 

211 model setup, the volume integral of dissipation in (7) can be rewritten with the proper boundaries as 

ˆ ˆ ˆ ( "� �2 � �2 
# � �2

)
0 0 0 ∂u ∂u ∂u

E2 = h µH + + µV dxdydzi (9) 
∂x ∂y ∂z H (d−c) (b−a) 

212 Recall that, for the hydrostatic simulations, the w0 term in both (8) and (9) is omitted. Both E1 and E2 have 

213 8 outputs per tidal cycle (12 hours) and are both averaged over each cycle to remove the tidal variability. 
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214 

222 

There are thus 9 different E1 and E2 values per experiment. These values are again averaged to obtain E1 

215 and E2, with associated errors quantified by calculating the standard deviation of the mean. 

216 In the ray tracing model, we calculate the Froude number using the velocity associated with the wave. 

217 However, in MITgcm simulations, the wave component cannot be differentiated from other motion, so the 

218 wave Froude number cannot be determined in these simulations. Instead we use the Richardson number, 

219 which is not particular to the wave, as the third and final diagnostic for the numerical model. 

220 The Richardson number is the ratio of the stratification to the square of the shear. Mathematically, it can 

221 be cast as 

N2 

Ri = (10) 
S2 

0 0 0 0where S2 = (∂u 0), which is easily /∂z · ∂u /∂z) and u is the horizontal component of wave velocity, (u , vH H H

223 calculated for all stratifications, including statically unstable scenarios. By the Miles-Howard criterion, 

224 linear stability of parallel shear flow requires Ri > 1/4; below this Richardson number the destabilizing 

225 effect of shear can overcome the stabilizing effect of stratification (Yih, 1980). Our scenario is not one of 

226 parallel shear flow, and this value of critical Richardson number is not generally applicable for all flows 

227 (Galperin et al., 2007; Lamb and Farmer, 2011); nonetheless, we will use Ri < 1/4 as a guide to regions 

228 where instability is more likely. The spatial structure of the simulation’s minimum Richardson number and 

229 turbulent dissipation nicely align. This agreement is not an artifact of the model, as there is no sub-grid 

230 scale scheme linking Richardson number and dissipation. Thus, despite the studies illustrating variations 

231 of the Richardson number threshold for instability, the canonical value of 1/4 appears appropriate for our 

232 study. 

233 While we broadly expect the Richardson number in the model to be small in the same regions where the 

234 Froude number is large from the ray tracing, we may not expect a perfect match. Due to the fact that 

235 the output from the MITgcm is for the total fluid flow, and that the Froude number is implicitly a wave 

236 quantity, it is more appropriate to use the Richardson number to understand regimes of instability from the 

237 MITgcm output. Conversely, the Froude number is more appropriate to gain insight into the regimes of 

238 instability in the ray tracing algorithm since we are only considering the wave field. Additionally, the ray 

239 tracing only uses a constant stratification, whereas the stratification in the model can change in the presence 

240 of the internal wave, thus altering the Richardson number. Despite the differences, both quantities are the 

241 most appropriate way to diagnose the potential instability in each of the two different methodologies. 

242 In Section 4, E1, E2 and Ri will be used to quantify the wave breaking in the MITgcm and Fr, the Froude 

243 number, as well as its component pieces of RD and m, ray density and vertical wavenumber, respectively, 
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244 to quantify potential instability in the ray tracing algorithm (for a full discussion of the Froude number, ray 

245 density and vertical wavenumber, please see part 1 (Nazarian and Legg, 2017a)). 

246 4. Results 

247 We start with a presentation of the MITgcm results and use the ray tracing algorithm that we have developed 

248 to interpret the results. Conversely, we use the MITgcm results to verify that the linear ray tracing algorithm 

249 is a useful method for understanding the internal wave scattering problem in continental slope canyons. 

250 In order to study the relative enhancement of wave breaking and wave-driven mixing due to the canyons, 

251 we normalize the values of E1 and E2 by the total energy being fluxed into the canyon region through the 

252 Western face (i.e. face a). The energy flux into the canyon is calculated using a flat control simulation, so this 

253 incoming energy flux is not effected by any topographic reflection. That is, we run a control simulation in 

254 which the topography is flat, and has a depth equal to the maximum depth present in the canyon simulations. 

255 This allows us to diagnose the incoming tidally-averaged wave flux without interference from reflected and 

256 refracted waves. The results for E1 and E2 are presented in figure 6. In addition to the fraction of the energy 

257 lost in each of the canyons, figure 6 includes the fractional energy loss for two control simulations; a near-

258 critical slope (same criticality as the near-critical slope canyon thalweg) and a vertical wall (both denoted 

259 at ζ = 0◦). There are three main regimes in the fractional energy loss. In Regime 1, both classes of canyons 

260 maintain a relatively constant energy loss as ζ increases. Recall that this corresponds to a decrease in the 

261 canyon mouth width. Figure 6 also illustrates another region we deem Regime 2, in which the fractional 

262 energy loss increases with increasing (decreasing) ζ (canyon width), albeit with a slight dip in the energy 

263 loss for near-critical slope canyons around ζ = 80◦ . Finally, we have Regime 3 in which the fractional energy 

264 loss decreases for the flat-bottom canyons and increases slightly for the near-critical slope canyons with 

265 increasing ζ. The regime threshold of ζ = 83◦ is taken empirically from the model simulations. The analysis 

266 of the differences between the divergence of the energy flux and the dissipation, as well as the occurrence of 

267 fractional energy losses greater than one, are left for Section 5. 

268 We first investigate the case of the flat bottom canyon. From the ray tracing (Part 1), we know that for 

269 the first regime there is, at most, one ray reflection inside the canyon. Thus, these canyons are not efficient 

270 at trapping wave energy and causing the wave to break. This lack of wave focusing aligns with the results 

271 from figure 6 that there is only a moderate increase in the fraction of energy loss in these canyons versus 

272 the vertical wall control (i.e. ζ = 0◦). As ζ increases towards the threshold of 30◦, fewer rays are able to 

273 enter the canyon region due to the narrowing canyon mouth, which leads to the relatively steady fraction of 

274 energy loss. In addition to the intuition gained from the ray tracing, this process is coupled with mixing that 

275 takes place at the canyon lip, similar to the case at a vertical wall or knife-edge (Klymak et al., 2013) (we 
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276 illustrate this boundary mixing later, in figure 8). By incising a canyon into a vertical wall, we essentially 

277 extend the length of the vertical wall, thereby extending the length over which boundary mixing can occur. 

278 Thus, there is a moderate increase in the energy lost in these canyons compared to a homogeneous vertical 

279 wall, as wave focusing toward the canyon center can function as an additional process leading to mixing. 

280 We now consider the second regime (30◦ < ζ < 83◦) for the case of the flat bottom canyon. Note that 

281 subsequent ray reflections inside the canyon are now possible and, at ζ = 45◦, the second reflection must 

282 be further into the canyon. This is in contrast to the outward reflection of rays that characterizes the first 

283 regime. The magnitude of relative ray density per grid box is slightly enhanced in this regime, compared to 

284 the first regime (this aligns with an increase in ray density observed in the ray tracing in Paper 1). Once 

285 the ray density is increased sufficiently (and the Richardson number is therefore reduced sufficiently), the 

286 wave breaks and overturning occurs, thereby leading to dissipation and mixing. The third regime occurs for 

287 ζ > 83◦, and this regime is characterized by a noticeable decrease in energy loss. While the ray tracing from 

288 Part 1 illustrates that these narrow canyons can lead to many ray reflections, there are few rays that are 

289 able to propagate into these canyons and so the ray density increase, and thus instability, decreases sharply. 

290 We can gain further insight into the spatial patterns of dissipation and mixing by considering the Richardson 

291 number diagnosed from the MITgcm simulations. Figure 8 illustrates the minimum Richardson number over 

292 one tidal cycle, as well as the maximum Froude number diagnosed from the ray tracing, along the center 

293 of a flat bottom canyon in the second regime of ζ-space, close to the maximum in relative energy loss. 

294 The tidally-averaged dissipation is also included in figure 8 to show the agreement between the spatial 

295 pattern of turbulent dissipation and regions of instability taken from the Richardson and Froude number 

296 calculations. For both nondimensional numbers, shaded regions designate regions where instabilities are 

297 possible. According to the Kelvin-Helmholtz criterion for instability, there are many regions in this case of 

298 flat bottom canyon which are potentially unstable. Specifically, the Richardson number calculation points 

299 to turbulent boundary layers emanating from the lip of the canyon towards the ocean interior. Figure 8 

300 has a region of instability up to 40 meters high and 500 meters laterally. This region emanating away from 

301 the canyon lip is a region of overturns due to an arrested lee wave, similar to to that seen in Klymak et al. 

302 (2013). This type of instability cannot be predicted from the linear ray density metric. Furthermore, figure 9 

303 presents instantaneous turbulent dissipation along the center of the canyon, taken at three instances during 

304 the same tidal cycle that the average is taken over. Tidal variation in dissipation along the center of the 

305 canyon is pronounced and extends much further away from the slope than that observed for a homogenous 

306 vertical wall. 

307 Although there are some regions where mixing occurs which are not predicted from the ray tracing model, 

308 indicating nonlinear processes are occurring, figure 8 illustrates that there is a generally good agreement 

309 between the spatial pattern of the minimum Richardson number and the maximum Froude number from ray 
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310 tracing. For instance, we observe that there is the potential for instability extending away from the canyon 

311 head along the sea floor (between x = 0 meters and x = 500 meters) which has not been observed before 

312 for plain vertical walls. Instead, this instability is the result of wave reflection in the canyon region and the 

313 resulting convergence of rays along the center of the canyon. This region of instability also increases as ζ 

314 increases further into Regime 2. This relatively good match is an example of the utility of the ray tracing. 

315 Although it can not capture the presence of the nonlinear lee wave, on the whole it matches the envelope of 

316 instability as diagnosed from the Richardson number in the numerical simulations reasonably well. Despite 

317 its limitations, the ray tracing model may be a useful tool to understand and predict parameter regimes in 

318 which increased energy loss is possible. 

319 The transition to the third regime, which we estimate from the MITgcm parameter space sweep to be 83◦, is 

320 empirically determined. We now attempt to use the theory that we have developed to explain this threshold. 

321 The physical argument that has been employed to describe the drop off in energy loss for very narrow canyons 

322 is that, while they are efficient dissipators, very little energy can enter through the narrow canyon mouth. P 
323 We find the maximum vertically-summed increase in ray density, ( (RD1/RD0)max in the canyon region z

324 as a function of parameter ζ by running the ray tracing algorithm for each simulation (see figure 7). The 

325 maximum value of the wave focusing efficiency occurs at ζ = 73.3◦ in the ray tracing data. Not only is this 

326 close to the transition point seen in the MITgcm simulations, but furthermore, figure 7 closely resembles 

327 the behavior of the energy loss diagnostics as a function of ζ seen in figure 6. This analytical approximation 

328 thus qualitatively captures the transition from the second to third regime, giving support to our theory for 

329 the physics leading to this transition, as well as confirming the utility of the ray tracing algorithm. 

330 While the majority of the attention has been given to the flat bottom canyon, the near-critical slope 

331 canyon case behaves similarly. The main distinction between the near-critical slope canyon and flat bottom 

332 canyon is that the sidewalls are not vertical in the case of the near-critical slope canyon, which allows a 

333 change/redistribution of wavenumber upon reflection, as outlined in Part 1. The main implication of this 

334 physics is that, in the first regime (ζ < 30◦), the rays are still scattered out of the canyon upon reflection, 

335 but onto the shelf, leading to relatively little energy loss in this regime. Given that the homogeneous criti-

336 cal slope is such an efficient dissipator of internal waves, it comes as no surprise that these relatively wide 

337 canyons are less efficient wave dissipators. Unlike the flat bottom canyon case, the transition between the 

338 first regime of outward scattering and the second regime of secondary reflections for critical slope canyons 

no longer occurs at ζ = 30◦ (i.e. the relative energy loss for the near-critical slope canyons around 30◦ 
339 are 

340 relatively constant). Instead, the transition point is shifted to ζ = 45.3◦ (as shown in Part 1). The offset 

341 between this regime-two transition point and that of the flat bottom canyon is a result of the difference in 

342 sidewall steepness. While the point of transition is shifted, the second regime still has the same underlying 

343 physics; rays are now reflected back into the canyon region where they can further reflect and scatter. As the 

344 number of reflections increases, so too does the likelihood of increasing vertical wavenumber and breaking. 
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345 Note however that there is decrease in the relative energy loss centered around 80◦ that is not observed 

346 for the flat bottom canyons. This is due to the fact that the ray density in the near-critical slope canyons 

347 decreases earlier as a function of ζ. 

348 Finally, the third regime occurs at the same threshold as for the flat bottom canyon (ζ = 83◦ , again 

349 empirically defined), but now the energy loss has a modest increase with increasing ζ. Although the ray 

350 density decreases rapidly, the increase in vertical wavenumber increases to a greater extent around this 

351 threshold from Regime 2 to 3, thus leading to a slight uptick in relative energy losses. We repeat the 

352 approach of taking the maximum vertically-summed increase in ray density for the near-critical slope canyon 

353 (seen in figure 7), however the agreement with the MITgcm relative energy loss (figure 6) is not as good for 

354 the case of the flat bottom canyon. This confirms our understanding that it is not only the change in ray 

355 and energy density in the near-critical slope canyons that leads to instability, but additionally the increase 

356 in vertical wavenumber, which has a stronger effect for larger values of ζ (see Part 1). 

357 We show the minimum Richardson number over one tidal cycle along the center of a Regime Two near-

358 critical slope canyon in figure 10. Like a plain near-critical uniform slope, we notice a broad region of shear 

359 instability along the slope with pockets of convective instability. As has been shown in the literature, this is 

360 due to a near-critical reflection and the subsequent high density of rays and energy along the slope (Ivey and 

361 Nokes, 1989). Figure 10 differs from a plane near-critical slope in that regions of potential instability extend 

362 away from the slope (i.e. x < 0). As in the case of the flat bottom canyon, we attribute this instability away 

363 from the canyon as a direct result of ray scattering and focusing within the canyon region, which increases 

364 the ray density along the center of the canyon. We again calculate the maximum Froude number from the 

365 ray tracing algorithm, seen in the bottom panel of figure 10. Thus, from taking the Froude and Richardson 

366 numbers in tandem, we see that the energy loss in the canyon region is the cumulative result of increased 

367 vertical wave number, as well as increased ray density. Again, note the agreement between the linear theory 

368 (ray tracing) and the numerical simulation. 

369 In addition to a match between the regions of instability diagnosed from the nondimensional numbers, Fr 

370 and Ri, the spatial patterns of instability match the spatial patterns of tidally-averaged turbulent dissipation 

371 calculated from the MITgcm (figure 10). This suggests that these nondimensional numbers are useful in 

372 understanding the energy loss within the canyon and serves as another demonstration that the internal wave 

373 scattering dynamics within canyons can be understood and predicted through the ray tracing algorithm that 

374 we have developed. Furthermore, figure 11 presents instantaneous turbulent dissipation along the center 

375 of the canyon, taken at three instances during the same tidal cycle that the average is taken over. Tidal 

variation in dissipation along the center of the canyon is pronounced. We attribute this variation to 376 a 

377 nonlinear bolus sloshing up the canyon. Note, however, that for all three snapshots in figure 11, the envelope 

378 of dissipation extends much further away from the slope than that observed for a homogenous critical slope. 
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379 So far, all calculations of energy loss, both E1 and E2, have been considered relative to the total energy 

380 flux entering the canyon region. To adequately determine whether canyons are more efficient at dissipating 

381 internal wave energy than their sloping counterpart, we normalize both E1 and E2 by the energy loss over a 

382 control topography of the same width (specifically, E1 for the canyon is normalized by E1 for the control and 

383 likewise E2 for the canyon is normalized by E2 for the control). Thus, we normalize all of the near-critical 

384 slope canyon calculations of energy loss by the energy loss over a near-critical slope (i.e. the same slope as 

385 the canyon thalweg) of the same width and height. Similarly, we normalize all flat bottom canyon energy 

386 loss calculations by the energy loss occurring over a vertical wall of the same width and height. Although 

387 vertical walls are not efficient dissipators of internal wave energy, we construct this control to tease out the 

388 effect of wave focusing by the canyon. Results are shown in figure 12. 

389 There are two main results that can be drawn from figure 12. First, note that the ratio of the energy loss 

390 in the near-critical slope canyon relative to the energy lost over a planar near-critical slope is less than or 

391 approximately unity throughout the ζ parameter space. For smaller values of ζ, this ratio is significantly 

392 less than one and, as ζ increases, moves toward unity. This behavior can again be explained using the three 

393 physical regimes we defined to explain figure 6. Specifically, for small ζ values, the canyon dissipates a small 

394 amount of energy since rays reflect out of the canyon, while the planar near-critical slope is a very efficient 

395 dissipator of energy. The near-critical slope canyon only achieves a near-critical slope along its thalweg, so 

396 the wave has less opportunity to undergo a near-critical reflection, and the associated enhanced mixing. As 

397 ζ increases, and the second regime is realized, the energy loss in the canyon and energy loss over the planar 

398 near-critical slope become more comparable due to wave trapping and the moderate increase in vertical 

399 wave number. Relative energy loss remains comparable for the third regime, although these canyons are so 

400 narrow that the total energy entering the canyon is small. It is important to note that, regardless of the 

401 value of ζ, near-critical slope canyons do not constitute a large increase in energy loss compared to a uniform 

402 near-critical continental slope. 

403 The second main result that emerges from figure 12 regards the flat bottom canyon. Specifically, for all 

404 values of ζ, and thus every regime, the flat bottom canyon dissipates more energy than its analogous vertical 

405 wall control. This is mainly a result of the diagnostic we are calculating. Specifically, the vertical wall mainly 

406 acts to reflect the wave and only dissipates a small fraction of its energy. Thus, since we divide by a small 

407 control, the relative energy loss due to the flat bottom canyon appears strikingly large. Note, however, that 

408 the overall fraction of energy loss for the flat bottom canyon seen in figure 12 has the same ζ dependence 

409 as seen for the flat bottom canyon in figure 6, which shows the fraction of incoming energy lost due to the 

410 presence of the canyon. Thus, for sections of the continental slope which are steep, the presence of flat 

411 bottom canyons poses an opportunity, by up to a factor of eight, to increase energy loss from the wave and 

412 the likelihood of diapycnal mixing. This is in good agreement with the ray tracing algorithm, which predicts 

413 a factor of eight increase in ray density for relatively narrow flat bottom canyons (figure 7), again illustrating 
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414 the utility of the ray tracing algorithm. This contrasts with the near-critical slope canyon where there is 

415 not necessarily more energy loss in the canyon than in the control. This is hinted at in figure 6, where both 

416 control simulations, the near-critical slope and vertical wall, are plotted at ζ = 0◦ . 

417 4.1. Resolution Dependence 

418 All of the results presented thus far concern the low resolution simulations. We test the resolution dependence 

419 of the results by repeating certain canyon geometries in a non-hydrostatic, high resolution configuration. 

420 Results are shown in figure 13. There is a small, albeit distinguishable, difference between the low-resolution, 

421 hydrostatic simulations and the high-resolution, non-hydrostatic simulations for large ζ. We believe that the 

422 high resolution, non-hydrostatic simulations are resolving some of the smaller scale mixing and overturning 

423 properties better than the low resolution simulations, such that higher energy dissipation may be achieved. 

424 It is important to stress that, since we are conducting a parameter sweep, we are primarily interested in the 

425 behavior in ζ and between the two canyon thalweg slopes (αt), under which we find consistent behavior in 

426 both parameters between the low and high resolution suites of simulations. 

427 Additionally, as mentioned in §3, the high resolution simulations are conducted with a lower forcing amplitude 

428 to satisfy the CFL criterion. Although the metrics for energy loss have a nonlinear dependence on the velocity 

429 amplitude, we expect this amplitude-dependence to be modest when dividing by the incoming flux or control, 

430 respectively, since these are also taken at the same lower amplitude. Both forcing amplitudes, and thus both 

431 incoming Froude numbers, are also the same order of magnitude (0.3 and 0.2 for low and high resolution 

432 simulations, respectively) and thus both are safely within the same regime of initial flow stability. To verify 

433 this hypothesis, we ran the low-resolution, hydrostatic simulations at the same reduced forcing amplitude as 

434 the high resolution simulation. Results are shown in figure 13. Note that the change in forcing velocity may 

435 account for some of the difference between the low- and high-resolution simulations but, as we conjectured, 

436 the result is small as all values are normalized by the control with the same forcing frequency. The same 

437 pattern, of relatively little change, is observed when normalizing the energy loss in the canyon relative to 

438 the incoming tidal energy. 

439 Finally, for the low resolution, hydrostatic simulations only a few grid cells comprise the canyon in the 

440 along-slope direction, which may introduce numerical errors. The small width for very large values of ζ is 

441 necessitated by the requirement that the length of the canyon be held fixed for all experiments. However, for 

442 large ζ, the high resolution, non-hydrostatic simulations mirror the energy loss patterns of the low resolution, 

443 hydrostatic simulations in figure 13 giving some confidence in these results despite their coarse resolution. 
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444 4.2. Ray Tracing Robustness 

445 We have seen in both figures 8 and 10 that there is a relatively good qualitative agreement between the spatial 

446 extent of instability predicted by the ray tracing algorithm and the spatial extent of instability diagnosed 

447 from the Richardson number and turbulent dissipation in the MITgcm. In all of the ray tracing figures, we 

448 have used the canonical threshold of Fr = 1 to determine where instability is possible. We now conduct a 

449 more quantitative test of the robustness of the ray tracing algorithm for this threshold of Fr = 1, as well as 

450 for lower Froude number thresholds. 

451 In order to gain a more quantitative understanding of the degree to which the region of potential instability 

452 predicted by the Froude number matches the region of turbulent mixing in the model, we consider the 

453 volume-integrated turbulent dissipation diagnosed from the MITgcm. Specifically, we take the ratio of the 

454 volume-integrated dissipation in the grid boxes where the Froude number predicts instability and the volume-

455 integrated dissipation over the entire canyon. Results are plotted in figure 14, and denoted by the unfilled 

456 markers. For the canonical Froude number threshold of unity, plotted on the right of figure 14, the linear 

457 ray tracing captures about 5-15% of the dissipation, depending on the canyon thalweg slope and the canyon 

458 aspect ratio (ζ). Overall, the ray tracing algorithm better captures the instability for the flat bottom canyons 

459 than the near-critical slope canyons. We additionally consider just the canyon center (i.e. a cross-section 

460 along the canyon center in the x-z plane), which is plotted in figure 14 in the form of filled markers. The 

461 ray tracing does a significantly better job in capturing the instability along the canyon center than over the 

462 entire canyon. This is unsurprising, given the relatively good agreement in the spatial maps of instability 

463 presented in figures 8 and 10. 

464 We repeat this test three more times, each with a successively lower Froude number threshold, and present 

465 the results in figure 14. As the Froude number threshold is lowered, the ray tracing algorithm’s region of 

466 instability more closely matches the MITgcm and thus encompasses more of the turbulent dissipation. For 

467 the lowest threshold, Fr ≥ 0.55, the ray tracing algorithm captures approximately 30-55% of the dissipation 

468 for the flat bottom canyons, and approximately 15-42% of the dissipation for the near-critical slope canyons. 

469 The increase in instability captured by the ray tracing for lower Froude number thresholds is present when 

470 considering both the entire canyon, as well as slices taken down the center of the canyon. 

471 As mentioned briefly in Part 1, there are regions of instability that the ray tracing algorithm can never 

472 predict, and thus we can never attain 100% of the model’s dissipation in figure 14. There are regions of 

473 strongly nonlinear processes, namely bores and arrested lee waves, which can never be encapsulated in a 

474 linear context. Additionally, we can not predict regions of constructive and destructive interference from the 

475 ray tracing algorithm. Given the focusing effects of canyons, constructive interference, and the subsequent 

476 wave steepening and breaking, could account for part of the dissipation mismatch between the ray tracing and 
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477 MITgcm. Despite these limitations, particularly in not being able to diagnose constructive and destructive 

478 interference, the ray tracing model has still been shown to be a useful tool to understand and predict 

479 parameter regimes in which increased energy loss is possible (particularly in the context of figure 7). 

480 It is also imperative to note that the Froude number threshold of 1 for instability is a threshold for super-

481 critical flow, and mixing is still possible for a Froude number less than 1. As we have shown here, a Froude 

482 number as low as 0.55 can be an appropriate threshold for instability in that most of the region of turbulent 

483 dissipation in the numerical model is captured in the ray tracing algorithm. It has been noted in the liter-

484 ature that mixing is possible for Froude number smaller than unity or conversely, for Richardson number 

485 larger than 0.25 (Galperin et al., 2007). Thus, our threshold of unity may be too stringent for instability to 

occur. Perhaps a more moderate value of Fr 0.75, safely in the range presented in figure 14, may be a 486 = 

487 more appropriate threshold for instability. This corresponds to a Richardson number of approximately 0.44 

488 which is within the bounds of where instability has been observed to occur (Galperin et al., 2007). 

489 5. Discussion 

490 Observational studies over the past two decades have shown that canyons are efficient dissipators of internal 

491 tides (Gordon and Marshall, 1976; Hotchkiss and Wunsch, 1982; Gardner, 1989; Bosley et al., 2004; Bruno 

492 et al., 2006; Lee et al., 2009a,b; Xu and Noble, 2009; Gregg et al., 2011; Hall and Carter, 2011; Waterhouse 

493 et al., 2013; Vlasenko et al., 2016). We have conducted an idealized parameter space sweep to understand 

494 the processes leading to this energy loss and quantify this energy loss relative to the energy lost over a 

495 comparable planar section of continental slope. For the case of the flat bottom canyon, both an increase in 

496 ray and energy density via topographic focusing, as well as a nonlinear arrested lee wave over the V-shaped 

497 canyon lip, are responsible for enhanced energy loss. In the near-critical slope canyon, an increase in ray 

498 density can similarly lead to increased energy dissipation, as can an increase in vertical wavenumber. We 

499 find that for a continental slope consisting of vertical walls, the insertion of a flat bottom canyon always 

500 increases the energy lost from incoming internal tides, whereas near-critical slope canyons largely decrease 

501 the energy loss at the slope relative to a planar near-critical slope. We confirm the observational studies that 

502 canyons can be potential sinks of internal wave energy. To conduct the study we have used a ray tracing 

503 algorithm and numerical model in tandem, with the numerical model illustrating the robustness of the linear 

504 theory in understanding the fundamentals of internal wave scattering in canyons. 

505 We have shown that energy flux divergence, dissipation, the Froude number and Richardson number can 

506 be used to quantify the effects of canyons; however there are differences between these different diagnostic 

507 quantities. In figures 6 and 12, the two diagnostics of the divergence of the energy flux and explicit energy 

508 dissipation, E1 and E2, respectively, are in broad agreement on the overall behavior of energy loss within 
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509 the canyon regions as ζ increases. It is clear however, in figure 6 that E1 is consistently larger than E2. This 

510 difference in metrics is due to the fact that we do not diagnose the numerical dissipation and energy input 

511 to mixing, which can add to this difference in diagnostics (i.e. the residual term in our energy budget, (7)). 

512 The difference in diagnostics is also most pronounced for large values of ζ where we expect that nonlinear 

513 processes, encapsulated in the residual term, will be more prevalent. 

514 Additionally, figure 6 suggests that some flat bottom canyons at high ζ can dissipate more internal wave 

515 energy than impinges on the canyon region from the west. The cause of this behavior is revealed by exam-

516 ination of the energy flux (presented in figure 15): the flux into the canyon through the y-boundaries for 

517 large ζ is positive, due to the scattering and refractive effects of the canyon. Specifically waves are refracted 

518 around the canyon mouth and enter the canyon through the side boundaries, giving rise to this large inward 

519 flux. In the control simulation with flat bathymetry, there is no net flux in the y-direction. 

520 The classes of canyons studied here are very idealized and were constructed to span the parameter space, yet 

521 provide insight relevant to real ocean canyons. In addition to obtaining a first order understanding of pro-

522 cesses contributing to internal wave breaking in submarine canyons, many canyons, irrespective of location, 

523 are short and steep, similar to some hybrid of our two classes (Harris and Whiteway, 2011). Additionally, 

524 numerous studies have shown that regions of the continental slope are near-critical to supercritical, most 

525 noticeably the recent TTIDE study, in which most of the incoming internal tides were reflected back toward 

526 the open ocean (Johnston, Rudnick, and Kelly, 2015). Thus, our construction of the relative energy loss due 

527 to canyons, relative to some continental slope, is relevant. The true energy loss enhancement by continental 

528 slope canyons may lie somewhere between that of the flat bottom and near-critical slope canyons in figure 

529 12 given that the average maximum continental slope across most of the continental slope is between critical 

530 and pure vertical (and may be two to eight times that lost on a planar supercritical continental slope). 

531 Another idealization is the generation of the internal wave normal to the topography. While this is a departure 

532 from reality, it allows us to obtain symmetric dissipation on both sides of the canyon and gain intuition into 

533 the focusing efficiency of the canyons as a function of the canyon aspect ratio. This simplification does not, 

534 however, alter the underlying physics of the problem. As this scenario is not our focus here, we leave this as 

535 another potential application of the ray tracing algorithm. 

536 In addition to the chosen canyon topography, further simplicities were made in ignoring the effects of rotation. 

537 A main consideration in ignoring the effects of rotation is the Rossby number, or the ratio of the advective 

538 to rotational terms in the momentum equation (formulated in Part 1), calculated as 

U 
Ro = (11) 

fL 
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539 where U is a velocity scale, f is the Coriolis parameter and L is a length scale. When Ro < 1, the effects 

540 of rotation should be considered while rotation can be ignored for cases when Ro > 1. For our case, the 

541 forcing velocity, U , is 2 cm/s, the basin length scale, L, is approximately 1 km and a low-latitude Coriolis 

542 frequency, f , is of order 10−5 . This yields a Rossby number of 2, so rotation is not important. Additionally, 

543 the omission of rotation made it easier to identify a relationship between the spatial structure of energy loss, 

544 as it has been shown that rotation may lead to asymmetries in the location of dissipation within canyons 

545 (Zhang et al., 2014). Other work has shown that rotation may be an important contributor to canyon 

546 upwelling dynamics (Waterhouse et al., 2009) and resonant amplification (Swart et al., 2011), although these 

547 studies were conducted for canyon lengths much larger than those presented here, and hence by (11), of 

548 small Rossby number and thus more affected by rotation. 

549 Additionally, we made the assumption of constant stratification in our ray tracing and numerical model setup. 

550 Our goal here, however, is not to simulate a real canyon in every aspect but to get a broader understanding 

551 of the processes occurring in canyons. Specifically, the constant stratification assumption translates to a 

552 constant angle of inclination for the group velocity vectors in the ray racing algorithm. This simplification 

553 made the output of the ray tracing scheme significantly easier to understand and use as a tool for interpreting 

554 the MITgcm results to probe the underling physics. 

555 6. Conclusion 

556 There have been extensive numerical modeling studies regarding internal tide energy loss at a variety of 

557 topographic features, yet submarine canyons, specifically canyons on the continental slope, have not received 

558 sufficient attention. As a first attempt to study the underlying physical processes and understand the 

559 topographic control on the ability of these canyons to induce mixing, we have conducted a parameter space 

560 study for idealized V-shaped canyons. The two topographic parameters that we have investigated are the 

561 thalweg steepness, related to angle αt, which included two cases: near-critical and pure vertical walls, as 

562 well as the ratio of canyon width to canyon length, related to angle ζ, which we allowed to vary between 

563 0◦ and 90◦ . Both energy loss diagnostics, the divergence of the energy flux and the dissipation, yield the 

564 same behavior for the parameter space; that is, as ζ increases, the percentage of incoming energy that is 

565 lost due to the canyon remains approximately constant and then, around ζ = 30◦, for vertical side walls, 

566 begins to increase and peaks just before ζ = 83◦, at which point it decreases. This behavior in ζ has some 

567 α-dependence as the near-critical slope canyons exhibits a small dip in energy loss centered around the same 

568 transition point of ζ = 83◦ before increases slightly for the narrowest canyons. Parameter α is also of equal 

569 importance to ζ when comparing the energy lost in the canyon to some plane continental slope. 

570 To explain these three distinct regimes and their associated physics, we use our ray tracing algorithm 
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571 (described in Part 1), as well as calculate the Richardson number from the MITgcm simulations. For the 

572 first regime (ζ < 30◦ for flat bottom canyons and ζ < 45.8◦ for near-critical slope canyons), energy loss 

573 remained roughly constant with ζ as less wave energy is able to propagate into the canyon region as it 

574 becomes narrower. Energy loss increases steeply with ζ in the second regime, as secondary wave reflections 

575 within the canyon are possible. For the near-critical slope canyon case, this means that there are more 

576 opportunities to increase the vertical wavenumber, thereby leading to instability. The near-critical slope 

577 canyon has a small dip in energy loss in Regime 2 around ζ = 80◦ as the ray density increase becomes less 

578 of a factor in energy loss and the relative importance of increases in vertical wave number rises. Both the 

579 flat bottom and near-critical slope cases also achieve an increase in Froude number in this regime through 

580 an increase in wave density within the canyon region. The significant increase in energy loss with ζ that 

581 characterizes Regime Two is sharply halted for the flat bottom canyons around ζ = 83◦, at which point 

582 energy loss falls off as ζ approaches 90◦ . For the near-critical slope canyons, there is still a slight uptick 

583 in energy loss as ζ approaches 90◦ owing to further increase in vertical wave number. In this third regime, 

584 although the wave can undergo many reflections, the canyon has become so narrow that relatively little wave 

585 energy can make it into the canyon region. It should also be noted that, for all regimes, the flat bottom 

586 canyons achieve energy loss due to a breaking lee wave mechanism at the steep wall edge enhanced by the 

587 increased ray density (Klymak et al., 2013). Thus, the three primary mechanisms for instability and mixing 

588 (increased ray and thus energy density, increased vertical wave number and the presence of lee waves) all 

589 combine in different regimes to lead to significant energy loss. Such canyons can dissipate up to nearly 100% 

590 of the incoming internal tide energy and can be more efficient pathways for dissipation, especially in the 

591 second ζ regime, than the surrounding continental slope. 

592 In comparing the spatial extent of instability, and thus potential extent for mixing, we have shown that the 

593 agreement between the extent of wave-breaking in the linear ray tracing algorithm (diagnosed from the Froude 

594 number) and the numerical model (diagnosed from both the Richardson number and turbulent dissipation) 

595 is variable based on the canyon geometry and the threshold for instability. The ray tracing can indicate 

596 where energy density increases, and how the vertical wavenumber changes. The full numerical simulations, 

597 however, include nonlinear processes, such as wave breaking, dissipation and mixing, as well as allowing for 

598 constructive and destructive interference. Hence the ray tracing can provide qualitative guidance as to the 

599 dependence of focusing on the canyon aspect ratio (see figure 7) and aid in the interpretation of the numerical 

600 simulations, but the numerical simulations are necessary to quantitatively determine the dissipation and its 

601 spatial distribution. This is the first time that ray tracing has been used to calculate quantities such as the 

602 vertical wavenumber, ray density and, subsequently, the Froude number. Given that there is a reasonable 

603 qualitative agreement with the models, the ray tracing may be used as a precursor to a GCM or observational 

604 campaign, to identify whether instabilities occur for given topography and where those instabilities occur. 

605 The ray tracing algorithm does not require significant computational power or time and may thus be a 
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606 powerful tool in considering whether GCM-scale simulations or field programs should be conducted, as well 

607 as the scope of such simulations or observations. 

608 Although this is an idealized study, it is an important first step toward characterizing the dissipative effects 

609 of continental slope canyons. The validity of these results can be tested in realistic continental slope canyons. 

610 If validated, this additional mixing could have important implications for ocean stratification and circulation. 

611 The spatial distribution of diapycnal mixing may be altered when the elevated levels of dissipation within 

612 continental slope canyons are accounted for and may only be accurately captured when we include all 

613 potential sinks of internal tidal energy in GCMs (Melet et al., 2016). 
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Table 1: Summary of Parameters of Interest for All Simulations 

α ζ (◦) H (m) L (m) −2) ω2 (10−8 s −2) N 2 (10−6 s
αnear−critical 19.9 100 744 1.99 1.00 

26.1 100 744 1.99 1.00 
30.8 100 744 1.99 1.00 
35.9 100 744 1.99 1.00 
46.2 100 744 1.99 1.00 
52.3 100 744 1.99 1.00 
64.4 100 744 1.99 1.00 
73.5 100 744 1.99 1.00 
76.5 100 744 1.99 1.00 
80.0 100 744 1.99 1.00 
83.2 100 744 1.99 1.00 
88.3 100 744 1.99 1.00 

90◦ 19.9 100 744 1.99 1.00 
26.1 100 744 1.99 1.00 
30.8 100 744 1.99 1.00 
35.9 100 744 1.99 1.00 
46.2 100 744 1.99 1.00 
52.3 100 744 1.99 1.00 
64.4 100 744 1.99 1.00 
73.5 100 744 1.99 1.00 
76.5 100 744 1.99 1.00 
80.0 100 744 1.99 1.00 
83.2 100 744 1.99 1.00 
88.3 100 744 1.99 1.00 
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Figure 1: Two classes of V-shaped canyons analyzed in this study. (a): near-critical slope canyon, (b): flat bottom canyon. 
Note that throughout our suite of experiments, angle ζ is varied identically for both class of canyons. Thus, the two different 
classes of V-shaped canyons are different in angle α only. The sidewalls of each canyon have isobaths, or lines of constant depth, 
drawn for clarity. 
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Figure 2: Instantaneous snapshots of the density perturbation taken along the center of a near-critical slope canyon with 
ζ = 30◦, taken at three equally spaced intervals over one tidal cycle (T ): at (top) 4.25, (middle) 4.625 and (bottom) 5 tidal 
cycles, respectively. The wave propagates into the domain from the Western boundary, interacts with the topography and is 
allowed to radiate freely out through the Eastern boundary (x and y are aligned with longitude and latitude, respectively). 
Snapshots taken from the high-resolution simulation. 
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Figure 3: Instantaneous snapshots of the density perturbation taken along the center of a flat bottom slope canyon with 
ζ = 30◦, taken at three equally spaced intervals over one tidal cycle (T ): at (top) 4.25, (middle) 4.625 and (bottom) 5 tidal 
cycles, respectively. The wave propagates into the domain from the Western boundary, interacts with the topography and is 
allowed to radiate freely out through the Eastern boundary (x and y are aligned with longitude and latitude, respectively). As 
seen in the progression of the density field, the wave can also partially reflect back towards the Western boundary. Snapshots 
taken from the high-resolution simulation. 
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Figure 4: All terms in energy budget, (2), respectively, using MITgcm model output integrated over the canyon volume for a 
near-critical slope canyon of ζ = 35.9◦ . Note that a quasi-steady state (the point at which the tendency term becomes small 
compared to other terms) is reached around the seventh tidal cycle (dashed line) and all calculations are taken from tidal cycle 
seven to tidal cycle sixteen. The residual term is calculated as the sum of the tendency, flux divergence and dissipation minus 
conversion so that equation (2) is satisfied. Thus diapycnal mixing is not explicitly calculated. All terms are calculated as a 
moving average over one tidal period. 
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Figure 5: Schematic of the region over which the volume-integrated divergence of the energy flux, E1, is calculated for all 
simulations. The divergence of the energy flux is the difference between the incoming flux normal to the mouth of the canyon 
and the flux out of the canyon. Note that the faces a, b, c and d are the same bounds used to calculate the volume-integrated 
dissipation, E2. 
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Figure 6: Fraction of incoming wave energy dissipated in the canyon region. Also included are the near-critical slope and 
vertical wall controls, marked at ζ = 0◦ . 
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Figure 7: The maximum vertically-summed increase in ray density as a function of the canyon width for flat bottom canyons 
(blue) and near-critical slope canyons (red). Dots indicate the values calculated for each value of ζ used in the canyon simulation. 
The relative maximum value for the flat bottom canyon occurs at ζ = 73.3◦ and the relative maximum for the near-critical 
slope canyon occurs at ζ = 26.1◦ . 
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Figure 8: (Top) Minimum Richardson number for one tidal cycle and (middle) tidally-averaged dissipation in the low-resolution, 
hydrostatic MITgcm simulation and (bottom) maximum Froude number from the ray tracing algorithm, taken along the center 
of a flat bottom canyon in the second regime. (Top) By the Miles-Howard criterion, all cyan regions can experience shear 
instability while navy regions additionally can experience convective instability. (Middle) There is generally good agreement 
between the regions of enhanced dissipation and Richardson number. Isopycnals (black lines) are drawn for reference and taken 
as a snapshot at T = 10 tidal cycles. (Bottom) Regions in which the Froude number is larger than unity are regions where 
instability can develop. Note that the canyon mouth is located at x = 0 meters. 
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Figure 9: Instantaneous turbulent dissipation along the center of a narrow (ζ = 73.5◦) flat bottom canyon at three instances 
during one tidal cycle, each separated by approximately a third of a tidal cycle: (top) 9.125 tidal cycles, (middle) 9.5 tidal 
cycles and (bottom) 9.875 tidal cycles. Instantaneous isopycnals are drawn in black. Note that the canyon mouth is located at 
x = 0 meters. 
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Figure 10: (Top) Minimum Richardson number for one tidal cycle and (middle) tidally-averaged dissipation in the low-resolution, 
hydrostatic MITgcm simulation and (bottom) maximum Froude number from the ray tracing algorithm, taken along the center 
of a near-critical slope canyon in the second regime. (Top) By the Miles-Howard criterion, all cyan regions can experience shear 
instability while navy regions additionally can experience convective instability. (Middle) There is generally good agreement 
between the regions of enhanced dissipation and Richardson number. Isopycnals (black lines) are drawn for reference and taken 
as a snapshot at T = 10 tidal cycles. (Bottom) Regions in which the Froude number is larger than unity are regions where 
instability can develop. Note that the canyon mouth is located at x = 0 meters. 
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Figure 11: Instantaneous turbulent dissipation along the center of a narrow (ζ = 73.5◦) near-critical slope canyon at three 
instances during one tidal cycle, each separated by approximately a third of a tidal cycle: (top) 9.125 tidal cycles, (middle) 
9.5 tidal cycles and (bottom) 9.875 tidal cycles. Instantaneous isopycnals are drawn in black. Note that the canyon mouth is 
located at x = 0 meters. 
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Figure 12: Ratio of internal wave energy lost in canyon region normalized by the control. For the near-critical slope canyons, 
the control is a near-critical slope, while for the flat bottom canyons, the control is a vertical wall. Any values greater than 
unity (indicated with the dashed line) indicate a parameter configuration yielding more energy loss in the canyon than in the 
corresponding control. 
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Figure 13: Same as figure 6, now including the high-resolution, low-amplitude simulations and the low-resolution, low-amplitude 
simulations. Note that L.R. denotes low resolution, H.R. denotes high resolution and L.A. denotes low amplitude. 
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Figure 14: Percentage of the volume-integrated turbulent dissipation diagnosed that occurs in regions of elevated Froude number 
as predicted by the ray tracing algorithm. Unfilled markers denote the comparison taken over the entire canyon; filled markers 
denote the comparison taken along the canyon center(i.e. a cross-section in the x-z plane). This comparison is conducted for 
four different Froude number thresholds: 0.55, 0.70, 0.85 and the canonical value of 1. 
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Figure 15: Vertically-integrated energy flux for the case of a flat bottom canyon with ζ = 82.1◦ (high resolution, non-hydrostatic 
resolution). The energy flux calculated over the entire nine tidal cycles (i.e. after steady state reached) and tidally-averaged, as 
done for all divergence of the energy flux and dissipation calculations. The vectors have all been normalized by the maximum 
value so as to show the relative energy flux throughout the canyon domain. Dashed lines indicate the y-boundaries for the 
canyon energy flux divergence and dissipation calculations. 
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